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Abstract

In this thesis, we study the micropolar fluid stagnation point flow over a stretch-

ing/shrinking sheet with the second order velocity slip. Thermal radiation and

MHD stagnation point flow of a micropolar fluid over a shrinking sheet is inves-

tigated. The assumptions on the micropolar fluid flow are that two-dimensional,

steady, laminar and incompressible. The similarity transformation is used to con-

vert the partial differential equations (PDEs) into the ordinary differential equa-

tions (ODEs). The numerical results have been found by the shooting technique.

The effect of different parameters such as the micropolar parameter, the magnetic

field, Prandtl number, aligned angle of magnetic field, 2nd order slip, stretch-

ing/shrinking rate, first order slip , suction parameter and thermal radiation on

the velocity, microrotation and temperature profiles are analyzed through tables

and graphs.
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Chapter 1

Introduction

The study of fluid on the stretching sheet is an important problem which has

been discussed in the current era because of its importance in different processes

of engineering like manufacturing processes such as glass fiber drawing, paper

production and plastic extrusion by Thomason et al. [1]. The fluid mechanics deals

with the behaviour of fluids at rest and in motions. Zheng et al. [2] investigated

the temperature effect with velocity slip on magnetohydrodynamics flow and heat

transfer over a shrinking sheet. Sakiadis [3] was the first one who investigated

the boundary layer flow on a continuous solid surface moving at a constant speed.

Ishak et al. [4] extended the Blasius and Sakiadis equations. Stagnation point is a

point in a flow field which has zero fluid’s velocity. The stagnation point flows are

of considerable importance in the fluid dynamic field and have been investigated

by many researchers. Hiemenz [5] was the first one who investigated the stagnation

point flow due to stretching sheet. Eckert [6] extanded Hiemenz’ work [5] along

with the energy equation. Zaimi and Ishak [7] investigated the slip effect on heat

transfer and stagnation point flow due to stretching vertical sheet. Fauzi et al. [8]

investigated the slip effect on the steady stagnation point flow and heat transfer

due to shrinking rate in a viscous fluid. Bhattacharyya et al. [9] discussed the slip

effect on the heat transfer and stagnation point flow over a shrinking sheet.

Many researchers found interested in the study of the micropolar fluid for the

different geometries. Erigen [10] was the first one who investigated the micropolar

1
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fluid. Ariman et al. [11] theoretically investigated the micropolar fluids and their

applications. Ishak et al. [12] discussed the stagnation point flow of a micropolar

fluid in two dimensional boundary layer flow of mixed convection on a stretching

sheet. Bhargava et al. [13] numerically investigated the solutions of micro-polar

transport due to a non-linear stretching sheet. Rees and Pop [14] theoretically

discussed free convection from a vertical flat plate in a micropolar fluid. Nazar et

al. [15], Ishak et al. [16], Hayat et al. [17], Yacob et al. [18] have also discussed the

stagnation point flow of a micropolar fluid due to stretching sheet, under different

physical conditions.

The effect of slip condition gives an interesting results for different fluids. Dor-

repaal [19] was the first one who introduced the slip velocity effect. Bellani and

Variano [20] discussed the slip velocity effect on the turbulent flow. Wang [21]

studied the slip effect on the viscous flow due to a stretching sheet. Noghrehabadi

et al. [22] investigated the partial slip effect on the heat transfer of nano-fluids

over a stretching sheet. Sharma et al. [23] investigated the slip effect of the heat

transfer due to stretching sheet on a CuO- water nano-fluid. A new model effect

of second order slip velocity was introduced by Wu [24]. Wang et al. [25] extended

the article of Wu [24] by considering the slip effect of stagnation point flow on a

heated vertical plate. Fang et al. [26] investigated the second order velocity slip

effect on the viscous flow due to a stretching sheet. Nandeppanaver et al. [27]

discussed the heat transfer and second order slip flow due to a stretching sheet.

Deissler [28], Roşca and Pop [29] and Turkyilmazoglu [30] investigated the second

order velocity slip effect, under different physical conditions.

The study of magnetic properties of electrically conducting fluids is known as

Magnetohydrodynamics (MHD). Many researchers are interested in the study of

MHD fluid flow because of its important applications in the processes of engineer-

ing. Alfven [31] was the first who introduced the effect of MHD on fluids flow.

Yih [32] numerically investigated the heat and mass transfer of free convection

effect on magnetohydrodynamic of a continuously moving permeable vertical sur-

face. Zheng et al. [33] discussed the MHD flow and heat transfer over a porous

shrinking sheet with temperature jump and velocity slip.
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Radiation is a process by which the heat is transferred through the electromagnetic

waves and it is the only heat transfer process that does not require a medium (i.e.

molecules) to transfer energy from a hot to a cold region. Makinde et al. [34]

investigated the thermal radiation effect on the heat and mass transfer flow of a

variable viscosity fluid. The thermal radiation effect on MHD nanofluid between

two horizontal rotating plates was analysed by Sheikholeslami et al. [35]. Raptis

et al [36] and Arpaci [37] discussed the effect of thermal radiation under different

physical conditions.

1.1 Thesis Contribution

In this thesis, a review study of Sharma et al. [38] has been presented and then

the flow analysis has been extended by considering the thermal radiation and

aligned magnetic field. The similarity transformation is used to transform the

modeled PDEs into a system of ODEs. The numerical results have been found by

the shooting technique and compared with those obtained through the MATLAB

built-in solver bvp4c. The numerical results are analyzed for behaviour of different

parameters through tables and graphs.

1.2 Thesis Outline

This thesis is further arranged in the following order:

In Chapter 2, some basic definitions and terminologies of the fluid and relevant

material are presented.

Chapter 3 contains a detailed review of the article of Sharma at el. [38]. A numer-

ical study of incompressible micropolar fluid, laminar, two-dimensional, stagnation

point, slip flow over a stretching/shrinking sheet has been examined.

In Chapter 4 the work of Sharma at el. [38] is extended by including the thermal

radiation and aligned magnetic field. Numerical values of the Nusselt number and
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skin friction coefficient have also been computed and discussed in this chapter.

Tables and graphs describe the behaviour of different physical parameters.

Chapter 5 summarizes the whole research work and gives recommendations for

future work.

All the references used in the research work are listed in Bibliography.



Chapter 2

Some Basic Definitions and

Governing Equations

In this chapter, some basic definitions, fundamental concepts and ideas of fluid

dynamics have been included. The terminologies relevant to the rest of the thesis

have been specially focused. Most of these have been taken from [39].

2.1 Fluid

“Fluid is a material which has the ability to flow. Both liquids and gases are

termed as fluids.”

2.2 Fluid Dynamics

“The study of fluids and its characteristics at motion.”

5
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2.3 Pressure

“The ratio of applied force to the unit area is said to be pressure. It is represented

by P and mathematically, written as

P =
F

A
, (2.1)

where A and F denote the unit area and the applied force, respectively.”

2.4 Density

“The mass per unit volume of a material is known as its density. Symbolically, it

is denoted by ρ and mathematically, it is expressed as

ρ =
m

v
, (2.2)

where v and m are the volume and mass of the material, respectively.”

2.5 Stress

“Stress is the force acting on the surface of the unit area within the distortable

body. Mathematically,

ρ =
F

A
, (2.3)

where A is the area and F is the force.”
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2.6 Normal Stress

“Normal stress is the element of stress in which a force acts normal to the unit

surface area.”

2.7 Kinematic Viscosity

“The ratio between the dynamic density and viscosity is defined as the kinematic

viscosity and is denoted by ν:

Kinematic viscosity =
dynamic viscosity

dynamic density
(2.4)

or ν =
µ

ρ
.” (2.5)

2.8 Classification of Fluids

2.8.1 Ideal Fluid

“Those fluids which have zero viscosity, are called ideal fluids.”

2.8.2 Real Fluid

“A fluid is said to a real fluid if it has a non-zero viscosity.”
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2.8.3 Newton’s Law of Viscosity

“The shear stress which distorts the fluid components viscosity is directly and

linearly proportional to the velocity gradient. Mathematically,

τyx ∝
du

dy
,

or τyx = µ
du

dy
, (2.6)

where τyx is the shear stress component of the fluid, u is the component of the

velocity and µ is the viscosity proportionality constant.”

2.8.4 Newtonian Fluids

“The real fluids for which the shear stress of the fluid varies directly and linearly

as the deformation rate, are called Newtonian fluids. Mathematically,

τyx = µ
du

dy
, (2.7)

where τyx is the shear stress, u denotes x-component of velocity and µ denotes

dynamic viscosity. Examples of Newtonian fluids are water, air, oxygen gas and

silicone oil etc.”

2.8.5 Non-Newtonian Fluids

“Non-Newtonian fluids are those for which the shear stress is not linearly propor-

tional to the deformation rate. Mathematically, it can be written as

τyx ∝
(
du

dy

)m
, m 6= 1

or τyx = µ

(
du

dy

)m
, (2.8)
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where µ denotes the viscosity, m is the index of flow performance. Note that for

m = 1, the above equation (2.8) reduces to the Newton’s law of viscosity. Blood,

paint, shampoo, toothpaste are the examples of non-Newtonian fluids.”

2.9 Types of Flow

2.9.1 Turbulent Flow

“In turbulent flow, the motion of the fluid particles is irregular and the path lines

are the erratic curves.”

2.9.2 Uniform Flow

“If the velocity of the flow has the same magnitude and direction during the motion

of a fluid, then the flow is said to be a uniform flow. Mathematically, it can be

written as
dV

ds
= 0, (2.9)

where V is the velocity and s is the displacement in any direction.”

2.9.3 Non-Uniform Flow

“In a non-uniform flow, the velocity is not same at every point of the fluid at a

given instant. Mathematically, it is expressed as

dV

ds
6= 0, (2.10)

where V is the velocity and s is the displacement.”
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2.9.4 Internal Flow

“The flow bounded by a solid surface is known as an internal flow. An example of

the internal flow is the flow in pipe or duct.”

2.9.5 External Flow

“The flow, which is not bounded by a solid surface, is known as an external flow.

An example of the external flow is the water-flow in the river or in the ocean.”

2.9.6 Steady Flow

“The flow, which is independent of time is said to be a steady flow. Mathemati-

cally, it can be written as
dξ

dt
= 0, (2.11)

where ξ is any fluid property.”

2.9.7 Unsteady Flow

“The flow, which depends on time, is known as unsteady flow. Mathematically, it

can be written as
dξ

dt
6= 0, (2.12)

where ξ is any fluid property.”

2.9.8 Compressible Flow

“The fluid flow in which the density with respect to the substance is not constant

is said to be a compressible flow.” Mathematically, it is expressed by
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ρ(x, y, z, t) 6= c, (2.13)

where c is a constant.”

2.9.9 Incompressible Flow

“The flow of fluid in which the density is constant, is said to be an incompressible

flow. It is mathematically described by

ρ(x, y, z, t) = c, (2.14)

where c is a constant.”

2.10 Heat Transfer Modes

2.10.1 Conduction

“The flow of heat through a solid or liquid by the intersection of free electrons

and molecules is said to be conduction. In other words, the heat transfer from

one body to another due to the molecular agitation with a material without any

motion of the material as whole is called conduction. Mathematically, it can be

written as

q = −kA
(

∆T

∆n

)
, (2.15)

where k and ∆T
∆n

denote the constant of the thermal conductivity and gradient of

the temperature respectively.”
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2.10.2 Convection

“In this process, heat transfer occurs due to the bulk fluid motion of molecules or

transfer of molecules. Mathematically, it is expressed as

q = hA(Ts − T∞), (2.16)

where h, A, Ts and T∞ denote the heat transfer coefficient, the area, the temper-

ature of the surface and the temperature away from the surface respectively.”

2.10.3 Mixed Convection

“Mixed convection is a mechanism in which both free and forced convection process

simultaneously and significantly contribute to transfer the heat.”

2.10.4 Radiation

“Radiation is the emission of energy in the form of waves or particles. For example,

if we place a material object ( e.g, a piece of steel) under the sun rays, after a few

moments, we observe that the material object is heated. Such phenomenon takes

place due to radiation. Mathematically, it can be written as

q = EσA[(∆T )4], (2.17)

where E, σ, ∆T , A, q are the emissivity of the scheme, the constant of Stephan-

Boltzmann (5.670×10−8 W
m2K4 ), the variation of the temperature, the area and the

amount of heat transferred respectively.”



13

2.11 Dimensionless Numbers

2.11.1 Prandtl Number

“The ratio of the kinematic diffusivity to the thermal diffusivity is said to be the

Prandtl number. It is denoted by Pr and mathematically it can be written as

Pr =
ν

α
=

µ
ρ

k
ρcp

=
µcp
k
, (2.18)

where ν, α denote the momentum diffusivity or kinematic diffusivity and the

thermal diffusivity respectively. Physical significance of Prandtl number is that

it gives the respective thickness of the velocity boundary layer and the thermal

boundary layer. For small Pr, heat diffuses very quickly as compared to the

momentum.”

2.11.2 Nusselt Number

“It examines the ratio of convective to the conductive heat transfer through the

boundary of the surface. It is a dimensionless number which was first introduced

by the German mathematician Nusselt. Mathematically, it is expressed by

Nu =
h∆T
k∆T
δ

=
hδ

k
, (2.19)

where h, δ and k denote the coefficient of heat transfer, the characteristic length

and the thermal conductivity respectively.”
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2.12 Basic Laws

2.12.1 Law of Conservation of Mass

“Continuity equation is derived from the law of conservation of mass and mathe-

matically, it is expressed by

∂ρ

∂t
+∇.(ρV ) = 0, (2.20)

where t is the time. In case of an incompressible fluid, the continuity equation is

expressed by

∇.V = 0.” (2.21)

2.12.2 Law of Conservation of Energy

“The energy equation for the fluid is

ρCp(
∂

∂t
+ V∇)T = k∇2T + τL+ ρCp

[
DB∇C.∇T +

DT

Tm
∇T
]
, (2.22)

where (Cp)f denotes the specific heat of the basic fluid, the specific heat of the

material has been represented by (Cp)s, the density of basic fluid by ρf , the rate of

strain tensor represented by L, the temperature of the fluid represented by T , the

Brownian motion coefficient by DB the , the temperature diffusion coefficient by

DT and the mean temperature by Tm. The expression for Cauchy stress tensor for

viscous incompressible fluid is expressed by

τ = −pI + µA1. (2.23)



15

In above equation tensor has been represented by A1, pressure represented by p

and the dynamic viscosity by µ.

A1 = OV + (OV )t, (2.24)

where ( )t represents transpose of the matrix for two dimensional field velocity of

the fluid. The stain tensor τ can be written as

τ =


σxx τyx τzx

τxy σyy τzy

τxz τyz σzz

 .” (2.25)

2.13 Methodology

“Shooting method is a numerical technique used to solve the boundary value prob-

lems for non-linear coupled ordinary differential equations. In this technique to

convert the boundary value problems into initial value problems. The differen-

tial equations of initial value problems are integrated numerically through RK-4

method. The formulated problem needs the IVP with arbitrarily chosen initial

conditions to approximate the boundary conditions. If the boundary conditions

are not fulfilled to the required accuracy, with the new set of initial conditions,

which are modified by Newton’s method. The process of Newton method is re-

peated until the require accuracy. Consider, the second order boundary value

problem,

y′′ = f(x, y, y′), (2.26)

along with boundary conditions

y(0) = 0, y(A) = B. (2.27)

To have a system of first order ODEs, use the notations:

y = y1, y′ = y2. (2.28)
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By using the notations (2.28) in (2.26) and (2.27) can be written as

y′1 = y2, y1(0) = 0,

y′2 = f(x, y1, y2), y1(A) = B.

 (2.29)

Choose the missing initial condition y2(0) = g, we have the following IVP:

y′1 = y2, y1(0) = 0,

y′2 = f(x, y1, y2), y2(0) = g.

 (2.30)

Now, the initial value problem satisfy the boundary condition y2(A) = B,

y1(A, g)−B = φ(g) = 0, (2.31)

To find an approximate root of (2.31) by the Newton’s method, is written as

gn+1 = gn −
φ(gn)

φ′(gn)
(2.32)

or

gn+1 = gn −
y1(A, gn)−B

∂
∂g

[y1(A, gn)−B]
(2.33)

To implement the Newton’s scheme, consider the following notations:

∂y1

∂g
= y3,

∂y2

∂g
= y4 (2.34)

Differentiating equations (2.30) w.r.t. g, we get the following four first order ODEs

along with the associated initial conditions.

y′3 = y4, y3(0) = 0,

y′4 = y3
∂f

∂y1

+ y4
∂f

∂y2

, y4(0) = 1.

 (2.35)

Now, solving the IVP (2.35), we get y3 at A. This value is actually the derivative

of y1 with respect to g computed at A. Using the value of y3(A, g) in Eq. (2.33),
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the modified value of g can be achieved. This new value of g is used to solve the

Eq. (2.30) and the process is repeated until the require accuracy.”



Chapter 3

Stagnation Point Flow of

Micropolar Fluid over a

Stretching/Shrinking Sheet

3.1 Introduction

In present chapter, we provided a detailed review of [38] has been presented. The

stagnation point flow of a micropolar fluid on a stretching/shrinking sheet has been

discussed subject to the assumption of velocity slip. The similarity transformation

is used to transform the modeled PDEs into a system of ODEs. The numerical

results have been found by the shooting method. Finally, the numerical results

are presented with discussion of the effects of different physical parameters.

3.2 Mathematical Modeling

Consider a steady, two-dimensional stagnation point flow of an incompressible mi-

cropolar fluid on a stretching/shrinking sheet with the assumption of slip velocity

effect. Assume that ue(x) = ax be the free stream velocity and uw(x) = bx be the

stretching/shrinking velocity respectively, where a and b are some real constants.

18
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Figure 1: Geometry of the problem.

For stretching sheet b > 0 and for shrinking sheet b < 0. The mathematical model

of the flow, presented by Sharma et al. [38] is as follows:

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= ue

∂ue
∂x

+

(
µ+ k

ρ

)
∂2u

∂y2
+
k

ρ

∂N

∂y
, (3.2)

ρj

(
u
∂N

∂x
+ v

∂N

∂y

)
=

(
µ+

k

2

)
j
∂2N

∂y2
− k

(
2N +

∂u

∂y

)
, (3.3)

where the velocity components has been represented by u and v respectively. Dy-

namic viscosity is denoted by µ, microrotation viscosity by k, fluid density by ρ,

micro inertia density by j and component of microrotation is denoted by N . The

boundary conditions of the above equations are given as

v = 0, u = uslip + uw(x), N = −n∂u
∂y

at y = 0,

u→ ue(x), N → 0 as y →∞,

 (3.4)

where ue(x), uslip and uw(x) represent the free steam velocity, slip velocity and

stectching/shrinking velocity. The stream function ψ identically satisfies the con-

tinuity equation. Mathematically,
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u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.5)

Now, introduce the following similarity variables from [38],

ψ =
√
νxue(x)f(η) =

√
aνxf(η),

η =

√
ue(x)

νx
y =

√
a

ν
y,

N = ue(x)

√
ue(x)

νx
h(η) = a

√
a

ν
xh(η),


(3.6)

where the stream function is represented by ψ and the kinematic viscosity is rep-

resented by ν.

• u =
∂

∂y

(√
aνxf(η)

)
=
√
aνxf ′(η)

∂η

∂y
= axf ′(η)

• v = − ∂

∂x

(√
aνxf(η)

)
= −
√
aνf(η)

 (3.7)

• ∂u
∂x

=
∂

∂x
(axf ′(η)) = af ′(η)

(
∵ η =

√
a

ν
y

)
• ∂v
∂y

=
∂

∂y
(−
√
aνf(η)) = −

√
νaf ′(η)

∂η

∂y
= −af ′(η)

 (3.8)

Looking at (3.8), the continuity Eq. (3.1) is straight forwardly satisfied.

• ∂u
∂y

=
∂

∂y
(axf ′(η)) = axf ′′(η)

∂η

∂y
= a

√
a

ν
xf ′′(η),

• ∂
2u

∂y2
= a

√
a

ν
xf ′′′(η)

∂η

∂y
=
a2

ν
xf ′′′(η),

• ∂N
∂x

= a

√
a

ν
h(η),

• ∂N
∂y

= ax

√
a

ν
h′(η)

∂η

∂y
=
a2

ν
xh′(η),

• ∂
2N

∂y2
=
a2x

ν
h′′(η)

∂η

∂y
=
a2x

ν
h′′(η)

√
a

ν
=
a2
√
a

ν
√
ν
xh′′(η).



(3.9)
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Using (3.7), (3.8) and (3.9) in Eq. (3.2), we have

a2x(f ′(η))2 − a2xf(η)f ′′(η) = a2x+

(
µ+ k

ρ

)(
a2

ν
xf ′′′(η)

)
+
k

ρ

(
a2

ν
xh′(η)

)
⇒ (f ′(η))2 − f(η)f ′′(η) = 1 +

(
µ+ k

νρ

)
f ′′′(η) +

(
k

νρ

)
h′(η)

⇒
(
µ+ k

νρ

)
f ′′′ + ff ′′ + 1− (f ′)2 +

(
k

νρ

)
h′ = 0

⇒ (1 +K)f ′′′ + ff ′′ + (1− f ′2) +Kh′ = 0,

(
∵ ν =

µ

ρ
and K =

k

νρ

)
. (3.10)

Using (3.6), (3.7) and (3.9) in (3.3), we have

ρj

(
a2

√
a

ν
xf ′h−

√
aν

a2

ν
xfh′

)
=

(
µ+

k

2

)
j

(
a2

ν

√
a

ν
xh′′
)

− k
(

2a

√
a

ν
xh+ a

√
a

ν
xf ′′
)

⇒ ρj

(
a

√
a

ν
f ′h−

√
aν

a

ν
fh′
)

=

(
µ+

k

2

)
j

(
a

ν

√
a

ν
h′′
)
− k

(
2

√
a

ν
h+

√
a

ν
f ′′
)

⇒ ρj

(
a

√
a

ν
f ′h−

√
aν

(√
a

ν

)2

fh′

)
=

(
µ+

k

2

)
j

(
a

ν

√
a

ν
h′′
)

− k
(

2

√
a

ν
h+

√
a

ν
f ′′
)

⇒ ρja (f ′h− fh′) =
aµ

ν

(
1 +

k

2µ

)
jh′′ − k (2h+ f ′′)

⇒ f ′h− fh′ = µ

ρν

(
1 +

k

2µ

)
h′′ − k

ρja
(2h+ f ′′)

⇒
(

1 +
K

2

)
h′′ + fh′ − f ′h−K(2h+ f ′′) = 0,

(
∵ K =

k

µ
=

k

νρ
and j =

ν

a

)
.

(3.11)



22

To convert the boundary conditions (3.4) into the dimensionless form, the following

procedure has been adopted.

• (a) y = 0⇒
√
ν

a
η = 0 ⇒ η = 0. (3.12)

(b) v = 0⇒ −
√
aνf(η) = 0⇒ f(η) = 0. (3.13)

(c) u = uw(x) + uslip = bx+

(
A
∂u

∂y
+B

∂2u

∂y2

)
([24])

⇒ axf ′(η) = bx+ A

(
a

√
a

ν
xf ′′(η)

)
+B

(
a2

ν
xf ′′′(η)

)
⇒ f ′(η) =

b

a
+ A

√
a

ν
f ′′(η) +B

a

ν
f ′′′(η)

⇒ f ′(η) = ε+ λf ′′(η) + δf ′′′(η). (3.14)

(d) N = −n∂u
∂y
⇒ a

√
a

ν
xh(η) = −n

(
a

√
a

ν
xf ′′(η)

)
⇒ h(η) = −nf ′′(η). (3.15)

• (a) y →∞⇒
√
ν

a
η →∞ ⇒ η →∞. (3.16)

(b) u→ ue(x)⇒ axf ′(η)→ ax⇒ f ′(η)→ 1. (3.17)

(c) N → 0 ⇒ a

√
a

ν
xh(η)→ 0⇒ h(η)→ 0. (3.18)

In (3.14), the stretching/shrinking rate has been represented by ε= b
a

, the first

order slip represented by λ=A
√

a
ν

and the second order slip by δ=B a
ν
, where A

and B have the following formulations [24]

A =
2

3

(
3− αl3

α
− 3

2

1− l2

Kn

)
λ,

B = −1

4

[
l4 +

2

K2
n

(
1 + l2

)]
λ2.

 (3.19)

Thus, the dimensionless form of the mathematical model of the present problem is:
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(1 +K) f ′′′ + ff ′′ + (1− f ′2) +Kh′ = 0,(
1 +

K

2

)
h′′ + fh′ − f ′h−K(2h+ f ′′) = 0,

 (3.20)

along with BCs:

f(0) = 0, f ′(0) = ε+ λf ′′(0) + δf ′′′(0),

h(0) = −nf ′′(0), f ′(η) −→ 1, h(η) −→ 1 as η →∞.

 (3.21)

3.3 Solution Methodology

The numerical solution of the mathematical model in the form of non-linear dif-

ferential equations (3.20) along with the boundary conditions (3.21) was reported

by Sharma et al. [38]. They opted the finite-difference method for the numerical

solution of the above model. In the present section, shooting method has been

proposed to reproduce the same solution. The Runge-Kutta technique of order

four and the Newton’s technique for solving the non-linear algebraic equations,

are the main components of the shooting method. Let us re-write equation (3.20)

as:

f ′′′ = − 1

1 +K

(
ff ′′ +Kh′ + (1− f ′2)

)
, (3.22)

h′′ =
2

2 +K
(f ′h− fh′ +K(2h+ f ′′)) . (3.23)

To have a system of first order ODEs, use the notations:

f = y1, f
′ = y′1 = y2, f

′′ = y′2 = y3, h = y4, h
′ = y′4 = y5. (3.24)

By using the notations (3.24), we have the following IVP:
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y′1 = y2, y1(0) = 0,

y′2 = y3, y2(0) = s,

y′3 = − 1

1 +K

(
y1 y3 + (1− y2

2) +Ky5

)
,

y3(0) =
1

λ

(
s− ε+

δ

1 +K

(
(1− s2) +Kt

))
,

y′4 = y5, y4(0) =
−n
λ

(
s− ε+

δ

1 +K

(
(1− s2) +Kt

))
,

y′5 =
2

2 +K
(y2 y4 − y1y5 +K (2y4 + y3)) , y5(0) = t.



(3.25)

For the computational purpose, the unbounded domain [0,∞) has been replaced

by a bounded domain [0, η∞], where η∞ is some suitable finite real number. It is

chosen in such a way that the solutions of the problem start looking settled for

η > η∞. In (3.25), the missing initial conditions s and t are to be chosen such that

y2(η∞, s, t)− 1 = 0 , y4(η∞, s, t) = 0. (3.26)

To start the iterative process, choose s = s0, t = t0. To update the values of s and

t, Newton’s iterative scheme has been used.

 sn+1

tn+1

 =

 sn

tn

−
 ∂y2

∂s
∂y2
∂t

∂y4
∂s

∂y4
∂t

−1

(sn, tn)

 y2(η∞, sn, tn)− 1

y4(η∞, sn, tn)

 (3.27)

To implement the Newton’s scheme, consider the following notations:

∂y1

∂s
= y6 ,

∂y2

∂s
= y7, ...

∂y5

∂s
= y10, (3.28)

∂y1

∂t
= y11 ,

∂y2

∂t
= y12, ...

∂y5

∂t
= y15. (3.29)
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Differentiating equations (3.25), first w.r.t. s and then w.r.t. t, we get the following

fifteen first order ODEs along with the associated initial conditions.

y′6 = y7, y6(0) = 0,

y′7 = y8, y7(0) = 1,

y′8 = − 1

1 +K
(y6y3 + y1y8 − 2y2y7 +Ky10) ,

y8(0) =
1

λ

[
1− 2δs

1 +K

]
,

y′9 = y10, y9(0) =
−n
λ

[
1− 2δs

1 +K

]
,

y′10 =
2

2 +K
[y7y4 + y2y9 − y6y5 − y1y10 +K (2y9 + y8)] ,

y10(0) = 0,

y′11 = y12, y11(0) = 0,

y′12 = y13, y12(0) = 0,

y′13 = − 1

1 +K
(y11y3 + y1y13 − 2y2y12 +Ky15) ,

y13(0) =
1

λ

(
δK

1 +K

)
,

y′14 = y15, y14(0) = −n
λ

(
δK

1 +K

)
,

y′15 =
2

2 +K
[y12y4 + y2y14 − y11y5 − y1y15 +K (2y14 + y13)] ,

y15(0) = 1.



(3.30)

Next, the IVP in the form of fifteen first order ODEs given in (3.25) and (3.30) is

solved by the RK−4 method. If for a sufficiently small ε∗,

max {|y2(η∞, sn, tn)− 1|, |y4(η∞, sn, tn)|} > ε∗, (3.31)

the guessed values of s and t are updated by the Newton’s iterative scheme:

 sn+1

tn+1

 =

 sn

tn

−
 y7 y12

y9 y14

−1

(η∞, sn, tn)

 y2(η∞, sn, tn)− 1

y4(η∞, tn, tn)

 (3.32)



26

The iterative process is repeated until, the following criteria is met.

max {|y2(η∞, sn, tn)− 1|, |y4(η∞, sn, tn)|} < ε∗. (3.33)

3.4 Results and Discussion

The main objective of the present section is to study the effect of different physical

parameters like K (micro-polar parameter), λ (the first order slip parameter), ε

(the stretching/shrinking rate), δ (the second order slip parameter) on the velocity

and micro-rotation profiles. The present results have been compared with the

previous results of Wang [40] and Bachok et al. [41] for different values of the

stretching/shrinking rate ε in Table 3.1. Wang [40] and Bachok et al. [41] have

discussed the stagnation point flow towards a stretching/shrinking sheet.

Values Wang [40] Bachok et al. [41] Current results
of ε
2.0 -1.88731 -1.8873066 -1.88730667
1.0 0 0 0
0.5 0.71330 0.7132949 0.71329496
0.0 1.232588 1.2325877 1.23258765

-0.25 1.40224 1.4022408 1.40224081
-0.5 1.49567 1.4956698 1.49566977
-1.0 1.32882 1.3288170 1.32881688
-1.2 0.55430 0.932473 0.93247336

-1.2465 – 0.5842956 0.58428274

Table 3.1: Comparison of f ′′(0) for different values of ε. When λ = 0, δ = 0,
K = 0 and n = 0.5.

The impact of the first order slip λ on the velocity profile is presented in Fig-

ure 3.1 (a). By increasing the values of the λ, the velocity profile is increased.

Physically, when slip occurs, the velocity of flow near the sheet is no longer equal

to the stretching velocity of the sheet. Figure 3.2 (b) demonstrates the impact

of first order slip λ on the velocity profile for different physical parameters. By

increasing the values of λ, the velocity profile is decreased. Hence the boundary

layer thickness is increased.
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The variations in the micro-rotation profile for the λ are demonstrated in Figure

3.2 (a) and 3.2 (b). An opposite flow behavior is determined with the first and

second solution. The thickness of boundary layer is deceased in the first solution

and increases in the second solution.

Figures 3.3 (a) and 3.3 (b) demonstrate the impact of the second order slip pa-

rameter δ on the velocity profile. Figure 3.3(a) indicates that by increasing δ, the

velocity profile is increased. Figure 3.3 (b) represents that by increasing δ, the

velocity profile is reduced.

The variations in the microrotation profile for different values of the second order

velocity slip δ are demonstrated in Figures 3.4 (a) and 3.4 (b). It shows that the

microrotation profile is initially increased as δ is increased for the first solution

and microrotation profile is decreased as δ is increased for the second solution.

The variations in the velocity profile for micropolar parameter K are demonstrated

in Figures 3.5 (a) and 3.5 (b). By increasing the values of the micropolar fluid

K, the velocity field is reduced in both the first and the second solution. It is

evident from these Figure 3.5 (a) and 3.5 (b) that all curves approach the far field

boundary conditions asymptotically.

The variations in the microrotation profile for micropolar parameter K are demon-

strated in Figures 3.6 (a) and 3.6 (b). From these graphs, it can be observed that

increasing the micropolar K, the velocity field is reduced in the lower half of the

surface whereas it is enhanced in the upper half. The velocity is going to re-

duce initially with the mounting values of the micropolar K. The boundary layer

thickness is increased in both the first and the second solution.
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(a)

(b)

Figure 3.1: Influence of λ on f ′.
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(a)

(b)

Figure 3.2: Influence of λ on h.
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(a)

(b)

Figure 3.3: Influence of δ on f ′.



31

(a)

(b)

Figure 3.4: Influence of δ on h.
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(a)

(b)

Figure 3.5: Influence of K on f ′.
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(a)

(b)

Figure 3.6: Influence of K on h.



Chapter 4

Thermal Radiation and MHD

Micropolar Fluid over a

Shrinking Sheet

4.1 Introduction

In the present chapter, the article of Sharma et al. [38] that was discussed in the

previous chapter has been extended by considering the thermal radiation effect

and the inclined MHD stagnation point flow of micropolar fluid due to stretching

sheet. To convert the PDEs into the ODEs, the similarity transformation will

be used. The numerical results have been found by the shooting technique using

MATLAB. Finally, the numerical results are presented with a discussion of the

effects of different physical parameters.

4.2 Mathematical Modeling

Consider a steady, two-dimensional stagnation point flow of an incompressible mi-

cropolar fluid on a stretching/shrinking sheet with the assumption of slip velocity

effect. The free stream velocity has been represented by ue(x) = ax and the

34
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Figure 1: Geometry of the problem.

stretching/shrinking velocity by uw(x) = bx. For the stretching sheet, b is taken

positive whereas for the shrinking case, b < 0. The mathematical model of the

flow, has been expressed as follows:

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
= ue

∂ue
∂x

+

(
µ+ k

ρ

)
∂2u

∂y2
+
k

ρ

∂N

∂y
− σB2

0

ρ
sin2(α)(u− ue), (4.2)

ρj

(
u
∂N

∂x
+ v

∂N

∂y

)
=

(
µ+

k

2

)
j
∂2N

∂y2
− k

(
2N +

∂u

∂y

)
, (4.3)

u
∂T

∂x
+ v

∂T

∂y
= α1

∂2T

∂y2
− 1

ρcp

∂qr
∂y

, (4.4)

where dynamic viscosity is denoted by µ, micro-rotation viscosity by k, fluid

density by ρ, micro-inertia density by j, component of micro-rotation vector by

N , fluid temperature by T , thermal diffusivity by α1 and the radiative heat flux

by qr. The boundary conditions for the above equations are:

v = −Vs, uw(x) + uslip = u, N = −n∂u
∂y
, T = Tw at y = 0, (4.5)

T = T∞, u→ ue(x), N → 0 as y →∞. (4.6)

In the above equations, suction/injection is denoted by Vs, where Vs is greater

than zero for suction velocity and less than zero for injection velocity. The slip



36

velocity has been represented by uslip, the reference temperature by T0 and ambient

temperature by T∞. Now, we use the following similarity variables.

ψ =
√
νxue(x)f(η) =

√
aνxf(η), η =

√
ue(x)

νx
y =

√
a

ν
y, (4.7)

N = ue(x)

√
ue(x)

νx
h(η) = a

√
a

ν
xh(η), (4.8)

θ(η) =
T − T∞
Tw − T∞

⇒ T = θ(η) (Tw − T∞) + T∞, (4.9)

where the kinematic viscosity has been represented by ν and the stream function

by ψ .

• ∂T

∂x
= 0

• ∂T

∂y
= θ′(Tw − T∞)

∂η

∂y
= θ′(Tw − T∞)

√
a

ν
,

• ∂2T

∂y2
= θ′′(Tw − T∞)

√
a

ν

∂η

∂y
= θ′′(Tw − T∞)

a

ν
,

• ∂T 4

∂y
=

∂

∂y

(
T 4
∞ + 4T 3

∞(T − T∞)
)

⇒ ∂T 4

∂y
=

∂

∂y

(
T 4
∞ + 4T 3

∞ (θ(Tw − T∞) + T∞)− T∞
)

⇒ ∂T 4

∂y
= 4T 3

∞θ
′ (Tw − T∞)

√
a

ν
,

• qr = −4σ∗

3k∗
∂T 4

∂y
= −16T 3

∞σ
∗

3k∗
θ′ (Tw − T∞)

√
a

ν
,

• ∂qr
∂y

= −16T 3
∞σ
∗

3k∗
∂2T

∂y2
∵
∂2T

∂y2
= θ′′ (Tw − T∞)

a

ν
.



(4.10)

Using (3.7), (3.8) and (3.9) from chapter. 3 in Eq. (4.2), we have

a2x(f ′(η))2 − a2xf(η)f ′′(η) = a2x+

(
µ+ k

ρ

)(
a2

ν
xf ′′′(η)

)
+
k

ρ

(
a2

ν
xh′(η)

)
− σB2

0

aρ
sin2(α)a2x(f ′(η)− 1)

⇒ (f ′)2 − ff ′′ = 1 +

(
µ+ k

νρ

)
f ′′′ +

(
k

νρ

)
h′ −M sin2(α)(f ′ − 1) ∵ M =

σB2
0

aρ

⇒
(
µ+ k

νρ

)
f ′′′ + ff ′′ + 1− (f ′)2 +

(
k

νρ

)
h′ −M sin2(α)(f ′ − 1) = 0

⇒ (1 +K)f ′′′ + ff ′′ + (1− f ′2) +Kh′ − (f ′ − 1)M sin2(α) = 0. (4.11)
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Using (3.7) and (3.9) in Eq. (4.3), we have

ρj

(
a2

√
a

ν
xf ′h−

√
aν

a2

ν
xfh′

)
=

(
µ+

k

2

)
j

(
a2

ν

√
a

ν
xh′′
)

− k
(

2a

√
a

ν
xh+ a

√
a

ν
xf ′′
)

⇒ ρj

(
a

√
a

ν
f ′h−

√
aν

a

ν
fh′
)

=

(
µ+

k

2

)
j

(
a

ν

√
a

ν
h′′
)
− k

(
2

√
a

ν
h+

√
a

ν
f ′′
)

⇒ ρj

(
a

√
a

ν
f ′h−

√
aν

(√
a

ν

)2

fh′

)
=

(
µ+

k

2

)
j

(
a

ν

√
a

ν
h′′
)

− k
(

2

√
a

ν
h+

√
a

ν
f ′′
)

⇒ ρja (f ′h− fh′) =
aµ

ν

(
1 +

k

2µ

)
jh′′ − k (2h+ f ′′)

⇒ f ′h− fh′ = µ

ρν

(
1 +

k

2µ

)
h′′ − k

ρja
(2h+ f ′′)

⇒
(

1 +
K

2

)
h′′ + fh′ − f ′h−K(2h+ f ′′) = 0,

(
∵ K =

k

µ
and j =

ν

a

)
.

(4.12)

Using (4.10) in (4.4), we have

0− θ′ (Tw − T∞) af = α1θ
′′ (Tw − T∞)

(a
ν

)
+

1

ρcp

16T 3
∞σ
∗

3k∗
θ′′ (Tw − T∞)

(a
ν

)
⇒ −fθ′ = α1

ν
θ′′ +

4

3νρcp

(
4T 3
∞σ
∗

k∗
θ′′
)

⇒ −fθ′ =
(

1

Pr
+

4α1

3νρcpα1

(
4T 3
∞σ
∗

k∗

))
θ′′

⇒ −fθ′ =
(

1

Pr
+

4α1

3νk1

(
4T 3
∞σ
∗

k∗

))
θ′′

⇒ −fθ′ =
(

1

Pr
+

4Rd

3Pr

)
θ′′

− fθ′Pr =

(
1 +

4Rd

3

)
θ′′

(
∵ Pr =

ν

α1

and Rd =
4T 3
∞σ
∗

k1k∗

)
. (4.13)
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Now, include the following procedure for the conversion of (4.5) and (4.6) into the

dimensionless form.

• y = 0⇒
√
ν

a
η = 0 ⇒ η = 0. (4.14)

v = Vs ⇒ −
√
νaf(η) = −Vs ⇒ f(η) =

Vs√
νa
⇒ f(0) = λ1. (4.15)

u = uw(x) + uslip = bx+

(
A
∂u

∂y
+B

∂2u

∂y2

)

⇒ axf ′(η) = bx+ A

(
a

√
a

ν
xf ′′(η)

)
+B

(
a2

ν
xf ′′′(η)

)
⇒ f ′(η) =

b

a
+ A

√
a

ν
f ′′(η) +B

a

ν
f ′′′(η)

⇒ f ′(η) = ε+ λf ′′(η) + δf ′′′(η). (4.16)

N = −n∂u
∂y
⇒ a

√
a

ν
xh(η) = −n

(
a

√
a

ν
xf ′′(η)

)
⇒ h(η) = −nf ′′(η). (4.17)

θ(η) =
T − T∞
Tw − T0

=
Tw − T∞
Tw − T∞

= 1. (4.18)

• y →∞⇒
√
ν

a
η →∞ ⇒ η →∞. (4.19)

u→ ue(x)⇒ axf ′(η)→ ax⇒ f ′(η)→ 1. (4.20)

N → 0 ⇒ a

√
a

ν
xh(η)→ 0⇒ h(η)→ 0. (4.21)

θ(η) =
T − T∞
Tw − T∞

=
T∞ − T∞
Tw − T∞

= 0. (4.22)

Here λ1 = Vs√
νa

is the suction/injection parameter, ε= b
a

the stretching/shrinking

rate, λ=A
√

a
ν

the first order slip and δ=B a
ν

the second order slip. Thus, the

dimensionless form of the mathematical model of the present problem is:

(1 +K)f ′′′ + ff ′′ + (1− f ′2) +Kh′ − (f ′ − 1)M sin2(α) = 0, (4.23)(
1 +

K

2

)
h′′ + fh′ − f ′h−K(2h+ f ′′) = 0, (4.24)(

1 +
4Rd

3

)
θ′′ + fθ′Pr = 0, (4.25)
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along with BCs::

f(0) = λ1, f ′(0) = ε+ λf ′′(0) + δf ′′′(0), h(0) = −nf ′′(0), θ(0) = 1, (4.26)

θ(η) = 0, f ′(η)→ 1, h(η)→ 0, as η →∞, (4.27)

where magnetic field has been represented by M , the micropolar parameter by K,

the Prandtl number by Pr = ν
α

, the suction/injection by λ1, the stretching/shrink-

ing rate by ε, the aligned angle of magnetic field by α, the first order slip denotes

by λ and the second order slip by δ. The skin friction coefficient and the local

Nusselt number are expressed as

Cf =
τw + kN

ρu2
e

, Nu =
xqw

k(T − T∞)
, (4.28)

where qw, the heat flux and shear stress τw are expressed as

τw =

[
(µ+ k)

∂u

∂y

]
y=0

, qw = −k
[(

1 +
16σ∗T 3

∞
3k1k∗

)
∂T

∂y

]
y=0

. (4.29)

The dynamic viscosity has been represented by µ and the thermal diffusivity by

k. By using (4.29) in (4.28), we get

CfRex
1
2 = [1 + (1− n)K]f ′′(0), NuxRex

− 1
2 = −

(
1 +

4Rd

3

)
θ′(0). (4.30)

4.3 Solution Methodology

The set of non-linear ODEs (4.23)-(4.25) along with the boundary conditions

(4.26)-(4.27) can not be solved analytically. For this, we use a numerical tech-

nique i.e, the shooting method with four order Runge-Kutta method. Let us
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re-write the equation(4.23)-(4.25) as:

f ′′′ =

(
1

1 +K

)[
M sin2(α)(f ′ − 1)− ff ′′ −Kh′ − (1− f ′2)

]
(4.31)

h′′ =

(
2

2 +K

)
[−fh′ + f ′h+K(2h+ f ′′)] (4.32)

θ′′ =

(
3

3 + 4Rd

)
(−fθ′Pr) (4.33)

For further proceeding, use the following notations:

f = y1, f
′ = y2, f

′′ = y3, h = y4, h
′ = y5, θ = y6, θ

′ = y7. (4.34)

By using the notations (4.34), we have the following IVP:

y′1 = y2,

y′2 = y3,

y′3 =

(
1

1 +K

)[
M sin2(α)(y2 − 1)− y1 y3 − (1− y2

2)−Ky5

]
,

y′4 = y5,

y′5 =

(
2

2 +K

)
[−y1 y5 + y2 y4 +K (2y4 + y3)] ,

y′6 = y7,

y′7 = −y1 y7

(
3Pr

3 + 4Rd

)
,



(4.35)



41

along with the following initial conditions:

y1(0) = λ1,

y2(0) = p,

y3(0) =

(
1 +K

(1 +K)λ− δλ1

)
[
p− ε− δ

(
1

1 +K

)(
M sin2 (α) (p− 1)−Kt− (1− p2)

)]
,

y4(0) =

(
−n(1 +K)

(1 +K)λ− δλ1

)
[
p− ε− δ

(
1

1 +K

)(
M sin2 (α) (p− 1)−Kt− (1− p2)

)]
,

y5(0) = t,

y6(0) = 1,

y7(0) = u,



(4.36)

where p, t and u are the initial guesses. In (4.36), the missing initial conditions p,

t and u are to be chosen such that

y2(η∞, p, t, u)− 1 = 0 , y4(η∞, p, t, u) = 0, y6(η∞, p, t, u) = 0. (4.37)

To start the iterative process, choose p = p0, t = t0 and u = u0. To update the

values of p, t and u, Newton’s iterative scheme has been used.

d∗ = e∗ − f ∗g, (4.38)

where

d∗ =


pn+1

tn+1

un+1

 , e∗ =


pn

tn

un

 , f ∗ =


∂y2
∂p

∂y2
∂t

∂y2
∂u
,

∂y4
∂p

∂y4
∂t

∂y4
∂u
,

∂y6
∂p

∂y6
∂t

∂y6
∂u
,


−1

(η∞, pn, tn, un)

,

g =


y2(η∞, pn, tn, un)− 1

y4(η∞, pn, tn, un)

y6(η∞, pn, tn, un)

 .
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To run the Newton’s scheme, consider the following notations:

∂y1

∂p
= y8 ,

∂y2

∂p
= y9, ...

∂y7

∂p
= y14, (4.39)

∂y1

∂t
= y15 ,

∂y2

∂t
= y16...

∂y7

∂t
= y21, (4.40)

∂y1

∂u
= y22 ,

∂y2

∂u
= y23, ...

∂y7

∂u
= y28. (4.41)

Differentiating equations (4.35) and (4.36) w.r.t. p, t and u, we get the following

twenty eight first order ODEs along with the associated initial conditions.

y′8 = y9, y8(0) = 0, (4.42)

y′9 = y10, y9(0) = 1, (4.43)

y′10 =
1

1 +K

(
y9M sin2(α)− y8y3 − y1y10 + 2y2y9 −Ky12

)
,

y10(0) =
1 +K

(1 +K)λ1 − δλ1

[
1− δ

1 +K

(
M sin2(α) + 2p

)]
, (4.44)

y′11 = y12, y11(0) =
−n(1 +K)

(1 +K)λ1 − δλ1

[
1− δ

1 +K

(
M sin2(α) + 2p

)]
, (4.45)

y′12 =
2

2 +K
[−y8y5 − y1y12 + y9y4 + y2y11 +K (2y11 + y10)] ,

y12(0) = 0, (4.46)

y′13 = y14, y13(0) = 0, (4.47)

y′14 =
3Pr

3 + 4Rd

(−y8y7 − y1y14), y14(0) = 0, (4.48)

y′15 = y16, y15(0) = 0, (4.49)

y′16 = y17, y16(0) = 0, (4.50)

y′17 =
1

1 +K

(
y16M sin2(α)− y15y3 − y1y17 + 2y2y16 −Ky19

)
,

y17(0) =
δK

(1 +K)λ1 − δλ1

, (4.51)
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y′18 = y19, y18(0) =
−nδK

(1 +K)λ1 − δλ1

, (4.52)

y′19 =
2

2 +K
[−y15y5 − y1y9 + y16y4 + y2y18 +K (2y18 + y17)] ,

y19(0) = 1, (4.53)

y′20 = y21, y20(0) = 0, (4.54)

y′21 =
3Pr

3 + 4Rd

(−y15y7 − y1y21), y21(0) = 0, (4.55)

and

y′22 = y23, y22(0) = 0, (4.56)

y′23 = y24, y23(0) = 0, (4.57)

y′24 =
1

1 +K

(
y23M sin2(α)− y22y3 − y1y24 + 2y2y23 −Ky26

)
,

y24(0) = 0, (4.58)

y′25 = y26, y25(0) = 0, (4.59)

y′26 =
2

2 +K
[−y22y5 − y1y26 + y23y4 + y2y25 +K (2y25 + y24)] ,

y26(0) = 0, (4.60)

y′27 = y28, y27(0) = 0, (4.61)

y′28 =
3Pr

3 + 4Rd

(−y22y7 − y1y28), y28(0) = 1. (4.62)

Next, the IVP in the form of twenty eight first order ODEs given in (4.35)-(4.36)

and (4.42)-(4.62) is solved by the RK−4 method.

4.4 Results and Discussion

The main objective of the present section is to analyze the effect of different

physical parameters such as micropolar K, magnetic field M , Prandtl number Pr,

aligned angle of the magnetic field α, stretching/shrinking rate ε, first order slip

λ, suction/injection λ1, second order slip δ and the thermal radiation Rd on the
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velocity, microrotation and temperature profiles. The numerical results have been

shown in the form of tables and graphs.

In Table 4.1 and Table 4.2, display the impact of different physical parameters

on local Nusselt number and skin-friction coefficient. We compare the obtained

results by shooting technique with Matlab bvp4c and found both to be in excellent

agreement. This Tables indicate that by increasing the micropolar parameter K,

skin-friction coefficient is increased but the local Nusselt number is reduced. By

increasing magnetic field M , the skin-friction coefficient is reduced and the local

Nusselt number is enhanced. By increasing Prandtl number Pr , there is no

effect on the skin-friction coefficient but the local Nusselt number is increased.

Decrease in aligned angle of magnetic field, local Nusselt number and the skin-

friction coefficient is decreased. Increase in microrotation parameter n and the

stretching rate ε, the skin-friction coefficient is reduced but local Nusselt number

is enhanced. By increasing second-order slip parameter δ, skin-friction coefficient

is increased but local Nusselt number is reduced. By increasing first order slip

parameter λ and suction parameter λ1, skin-friction coefficient is decreased and

the local Nusselt number is increased. Increase in thermal radiation Rd, there is

no effect on the skin-friction coefficient but the local Nusselt number is reduced.

Figure 4.1 displays the effect of micropolar K on the velocity profile. This figure

indicates that by increasing the micropolar parameter K, the velocity profile is

reduced. Reverse flow is observed near the surface as the micropolar parameter

K is increased. Figure 4.2 shows the effect of the micropolar parameter K on the

micro-rotation profile. By increasing the micropolar parameter K, the microrota-

tion profile is decreased in the lower half of the surface whereas it is enhanced in

the upper half. The effect of K on the temperature profile is presented in Figure

4.3. By increasing K, the temperature profile is enhanced.

The variations in the velocity profile for different values of the magnetic field M

are demonstrated in Figure 4.4. It can be seen that by increasing magnetic field

M , the velocity profile is increased. This is due to the fact that the magnetic

field M enhances the fluid motion in the boundary layer. Figure 4.5 shows the
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variation in the micro-rotation profile for different estimations of the magnetic

field M . By increasing M , the micro-rotation is increased. Thus, the boundary

layer thickness is decreased. Figure 4.6 shows the effect of magnetic parameter M

on the temperature profile. By increasing M , the temperature profile is reduced.

Figures 4.7 and 4.8 demonstrate the variations in the velocity and micro-rotation

profiles for different estimations of the shrinking parameter ε. It is observed that

by increasing the shrinking parameter ε, the velocity profile and micro-rotation

profile is increased. Figure 4.9 shows the effect of the shrinking parameter ε on

the temperature profile. By increasing ε, the temperature profile is reduced.

The suction parameter λ1 effect on the velocity profile is presented in Figure 4.10.

It can be seen that by increasing λ1, the velocity profile is increasing significantly.

The variations in the micro-rotation profile for λ1 are demonstrated in Figure

4.11. From this graph, increasing λ1, the micro-rotation profile is enhanced. The

thickness of boundary layer is reduced. Figure 4.12 shows the impact of the suction

parameter λ1 on the temperature profile. By increasing λ1, the temperature profile

is decreased.

The variations in the temperature profile for different values of the Prandtl number

Pr are demonstrated in Figure 4.13. It is observed that the greater Pr has weaker

thermal diffusivity resulting in a low range temperature. Figure 4.14 shows the

influence of Rd on the temperature profile. From this graph, by increasing Rd, the

temperature profile is enhanced. Thus, the boundary layer thickness is increased.
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K M Pr α n δ ε λ λ1 Rd shooting bvp4c

0.5 0.2 0.5 π/2 0.5 -0.5 -1.2 0.5 0.2 0.5 1.57309 1.57495
1.2
2
3

1.94793
2.30797
2.68691

1.94515
2.30618
2.68620

0.8
2
4

1.56460
1.51094
1.42251

1.56440
1.51292
1.42257

0.6
0.7
0.8

1.57309
1.57309
1.57309

1.57495
1.57495
1.57495

π/6
π/12
π/18

1.57360
1.57045
1.57034

1.57180
1.57033
1.56999

0.6
0.7
0.8

1.51543
1.45533
1.39450

1.51557
1.45539
1.39451

-1.8
-1
-0.05

0.86079
1.21634
1.93058

0.85989
1.21699
1.92862

-1.9
-1.7
-1.5

2.04460
1.92216
1.78713

2.04407
1.92162
1.78638

0.2
0.3
0.8

1.89263
1.77755
1.34207

1.89113
1.77533
1.34347

0.4
0.6
0.8

1.57673
1.56611
1.54957

1.57660
1.56769
1.55107

0.7
0.9
1.1

1.57309
1.57309
1.57309

1.57495
1.57495
1.57495

Table 4.1: Numerical results of Cf (Rex)1/2 for different values of K, M , α, n,
δ, ε, λ and λ1.



47

K M Pr α n δ ε λ λ1 Rd shooting bvp4c

0.5 0.2 0.5 π/2 0.5 -0.5 -1.2 0.5 0.2 0.5 0.64744 0.64744
1.2
2
3

0.60581
0.56310
0.51637

0.60581
0.56311
0.51637

0.8
2
4

0.68098
0.71478
0.74093

0.68099
0.71478
0.74091

0.6
0.7
0.8

0.70554
0.75905
0.80897

0.70554
0.75906
0.80897

π/6
π/12
π/18

0.63456
0.63097
0.63021

0.63458
0.63097
0.63022

0.6
0.7
0.8

0.65405
0.66052
0.66687

0.65403
0.66051
0.66687

-1.8
-1
-0.05

0.72746
0.69222
0.58035

0.72745
0.69221
0.58035

-1.9
-1.7
-1.5

0.54107
0.58218
0.61224

0.54112
0.58219
0.61224

0.2
0.3
0.8

0.58979
0.61432
0.67781

0.58981
0.61435
0.67781

0.4
0.6
0.8

0.73216
0.81656
0.90088

0.73216
0.81655
0.90088

0.7
0.9
1.1

0.70064
0.75090
0.79886

0.70065
0.75090
0.79886

Table 4.2: Numerical results of Nux(Rex)−1/2 for different values of K, M ,
Pr, α, n, δ, ε, λ, λ1 and Rd.
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Figure 4.1: Impact of K on f ′.

Figure 4.2: Impact of K on h.
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Figure 4.3: Impact of K on θ.

Figure 4.4: Impact of M on f ′.
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Figure 4.5: Impact of M on h.

Figure 4.6: Impact of M on θ.
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Figure 4.7: Impact of ε on f ′.

Figure 4.8: Impact of ε on h.
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Figure 4.9: Impact of ε on θ.

Figure 4.10: Impact of λ1 on f ′.
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Figure 4.11: Impact of λ1 on h.

Figure 4.12: Impact of λ1 on θ.
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Figure 4.13: Impact of Pr on θ.

Figure 4.14: Impact of Rd on θ.



Chapter 5

Conclusion

In this thesis, we discussed the slip effect of a micropolar fluid over a stretch-

ing/shrinking sheet along with the thermal radiation and aligned magnetic field.

The system of PDEs transformed into ODEs used by similarity transformation.

The numerical results are found by the shooting technique in MATLAB. Signifi-

cance of different physical parameters such as micropolar parameter K, magnetic

field M , Prandtl number Pr, aligned angle of the magnetic field α, second order

slip parameter δ, stretching/shrinking rate ε, first order slip λ, suction parameter

λ1 and the thermal radiation parameter Rd on the velocity, microrotation and

temperature profiles are discussed tabularly and graphically.

Conclusions which are obtained:

• Increasing the micropolar parameter, the temperature profile is increased but

the velocity and micro-rotation profiles are decreased.

• By increasing magnetic field, the velocity and microrotation profiles are increased

and the temperature profile is decreased.
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• Due to an increase in the shrinking parameter, temperature profile increases

whereas the velocity and micro-rotation profiles are decreased.

• Increasing the suction parameter, the velocity and microrotation profiles are in-

creased and temperature profile is reduced.

• By increasing the Prandtl number, the temperature profile is reduced. The

thickness of boundary layer is decreased.

• Temperature profile increases with increase in thermal radiation.

5.1 Future Scope

In future, this problem may be extended in many directions focusing on the fol-

lowing ideas:

• The influence of viscous dissipation.

• The impact of Joule heating and heat generation and absorption.
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